Домашняя страничка "Группы динамики" Отдела системного анализа и проблем управления   
Института технической механики НАН Украины и НКА Украины

Направления работы:


Хаос

Космические тросовые системы

Гравитационная стабилизация

Системы управления ориентацией космического аппарата



Пишите нам


КТС: Литература

Монографии

Tethers in Space Handbook. Edited by Cosmo M.L., Lorenzini E.C.: 3rd edition. - Smithsonian Astrophysical Observatory. - 1997. Обложка, Глава 1, Главы 2-4, Главы 5-8.

Статьи

Алпатов А.П., Драновский В.И., Закржевский А.Е., Пироженко А.В., Хорошилов В.С. Космические тросовые системы. Обзор проблемы // Космічна наука і технологія. — 1997. — Т. 3, № 5/6. — С. 21–29.

Рассматриваются задачи, подходы к их решению и достижения современного уровня создания космических тросовых систем с точки зрения их динамики. Дается классификация актуальных задач и методов их исследования. Проведен анализ физических моделей, методов построения математических моделей и возможных режимов движения космических тросовых систем.  Скачать >>


Белецкий В.В., Иванов М.Б., Отставнов Е.И. Модельная задача о космическом лифте // Космические исследования - 2005 - Т.43, №.2 - С.157-160.  Скачать >>


Белецкий В.В., Пивоваров М.Л. О влиянии атмосферы на относительное движение гантелеобразного спутника // Прикладная математика и механика - 2000 - Т.64, вып.5 - С.721-731.

Рассматривается орбитальная "связка тел" — две материальные точки, соединенные идеально гибкой безмассовой нерастяжимой нитью. Получены уравнение плоского относительного движения системы на натянутой нити и условия существования такого движения в предположении, что центр масс системы движется по кеплеровой эллиптической орбите. Учитываются моменты сил гравитационных, аэродинамического давления, аэродинамического трения и аэроградиентный эффект. Аэроградиентный эффект может привести к сильной раскрутке спутника, а эллиптичность орбиты — к хаотизации движения.  Скачать >>


Дигнат Ф., Шилен В. Управление колебаниями орбитальной тросовой системы // Прикладная математика и механика - 2000 - Т.64, вып.5 - С.747-754.

Предлагается подход к введению демпфирования колебаний конструкций с использованием техники оптимизации и приложением к орбитальной тросовой системе. Эта система моделируется символьными уравнениями динамики системы многих тел, элементы которой испытывают большие деформационные смещения, вследствие чего необходимы механизмы демпфирования, активного или пассивного. Оптимизация проводится по скорости демпфирования колебаний конструкции. Активное демпфирование обеспечивается управляемым звеном (лебедкой троса), расположенным между основным телом и тросом. В качестве критерия качества используется потеря энергии в системе. Сложная динамика движения такой системы продемонстрирована расчетами при различных начальных данных с учетом колебаний конструкции. Показано, что оптимизация позволяет улучшить значения параметров управления по отношению к диссипации энергии продольных колебаний троса.  Скачать >>


Набиуллин М.К. Устойчивость положений равновесия космической орбитальной тросовой системы // Механика твердого тела - 2004 - Т.4 - С.7-18.

Рассматривается задача стабилизации положений равновесия космической орбитальной тросовой системы (ОТС). ОТС состоит из тела-носителя с маховиками и присоединенного к нему на длинном весомом тросе зонда-спутника. Зонд-спутник считается материальной точкой, трос - гибкой нитью, не испытывающей сопротивления на изгиб и кручение. Предполагается, что центр масс тела-носителя с маховиками совершает движение по известной кеплеровской круговой орбите в ньютоновском центральном поле сил. Найдены частные решения нелинейных дифференциальных уравнений с обыкновенными и частными производными, соответствующие положениям равновесия ОТС в орбитальной системе осей координат. Главные центральные оси ОТС коллинеарны осям орбитальной системы осей координат. Трос с зондом расположен вдоль радиуса орбиты и направлен в сторону притягивающего центра. Трос с зондом расположен вдоль радиуса орбиты и направлен в сторону противоположную от притягивающего центра. Трос с зондом направлен по касательной к орбите. Методом функционалов Ляпунова получены достаточные условия устойчивости положений равновесия ОТС и проведен их анализ.

Вопросы нелинейной динамики, устойчивости, либрационных колебаний и управления различных типов орбитальных тросовых систем на круговой и эллиптической орбитах под воздействием аэродинамических, магнитных сил, а также сил тяги, приложенных к телу-носителю, изучались многими авторами [1-8]. В [9-11] исследовалась устойчивость положения равновесия ОТС. Результаты сопоставлены с известными.  Скачать >>


Пироженко А.В. Управление движением связки двух тел в гравитационном поле изменением длины связи // Космические исследования. — 1990. — Т. 30, вып. 4 — С. 473–482.

Рассматривается управление движением связки путем периодического изменения длины связи. Анализируется взаимосвязь поступательного и вращательного движений, обусловленная постоянством вектора кинетического момента системы. Показано, что посредством регулирования длины связи можно управлять векторами кинетических моментов вращательного и орбитального движений. Методом усреднения для ряда схем управлений длиной связи построены уравнения первого приближения и приведены оценки скоростей изменения параметров.  Скачать >>


Пироженко А.В. О влиянии диссипации энергии в материале нити на эволюцию ротационного движения космической тросовой системы // Космiчна наука i технологiя. — 1998. — Т. 4, № 5/6. — С. 1–9.

На примере системы двух материальных точек, соединенных невесомой упругодиссипативной нитью, как простейшей модели упруговязкой системы, исследуются закономерности эволюции вращательного движения в гравитационном поле сил. Анализ закономерностей движения системы на кеплеровой орбите показал, что диссипация энергии в материале нити приводит к физически ясной тенденции в эволюции параметров относительного движения: система стремится к положению, которое минимизирует уменьшение энергии относительного движения. Анализ поступательно-вращательного движения системы показал, что общая картина действия диссипативних сил на движение системы состоит из их стремления уменьшить потерю энергии (увеличить ее прием) для каждого из движений - вращательного и относительного. Действие диссипативних силы направлено на увеличение эксцентриситета орбиты и перевод обращения системы в прямое.  Скачать >>


Поляков Г.Г. Радиальная система связанных спутников // Космические исследования. — 1981. — Т.19, №3. — С.467-470.  Скачать >>


Родников А.В. О движении груза по тросу, закрепленному на гантелевидном космическом аппарате // Космические исследования. — 2004. — Т.42, №4. — С.444-448.  Скачать >>


Aguero V.M. et al. Current Collection Model Characterizing Shuttle Charging During the Tethered Satellite System Missions // Journal of spacecraft and rockets. — 2000. — V.37, No.2 — С.212-217.

This research presents a new mathematical model characterizing the negative potential electrical charging behavior of large spacecraft in low Earth orbit that are actively collecting charge, such as part of an electrodynamic tether system. The analysis was carried out to identify significant plasma current sources affecting steady-state spacecraft charging using data from the tethered satellite system missions. During both tethered satellite missions (Aug. 1992 and Feb. 1996), Space Shuttle Orbiter charging was lower than expected. The current collected by the Orbiter greatly exceeded premission predictions based on thin sheath, ram-dominated current collection. Our investigation revealed that the tethered satellite deployer boom was conducting and was grounded to the Orbiter providing a significant current path from the plasma. Modeling results suggest that the plasma sheath significantly augmented the ram current collected by the main engine nozzles and the satellite deployer boom by expanding the effective current collecting area.  Скачать >>


Caroll J.A. SEDS Deployer Design and Flight Performance // Fourth International Conference on Tether In Space, Washington, 10–14 April, 1995. — P. 593–600.

The Small Expendable Deployment System (SEDS) was conceived as a complement to the Tethered Satellite System deployer for use when tether retrieval is not required. This paper reviews the history, design, and Capabilities of SEDS, and discusses its flight performance, based on data collected during the successful SEDS-1 flight experiment.  Скачать >>


Caroll J.A., Oldson J.C. SEDS Characteristics and Capabilities // Fourth International Conference on Tether In Space, Washington, 10–14 April, 1995. — P. 1079–1090.

This paper presents the characteristics, key limitations, and capabilities of SEDS, the Small Expendable Deployment System. It discusses past, future, and potential SEDS missions to show how to use SEDS to best advantage, and provides cost estimates for using SEDS and for modifying SEDS control laws, tethers, and/or hardware when necessary. This is a companion paper to "SEDS Deployer Design and Flight Performance" in these proceedings, which discusses the development and design of SEDS hardware in more detail.  Скачать >>


Estes R.D., Sanmartin J., Martinez-Sanchez M. Performance of Bare-Tether Systems Under Varying Magnetic and Plasma Conditions // Journal of spacecraft and rockets. — 2000. — V.37, No.2 — С.197-204.

Electrodynamic tethered systems, in which an exposed portion of the conducting tether itself collects electrons from the ionosphere, promise to attain currents of 10 A or more in low Earth orbit. For the . rst time, another desirable feature of such bare-tether systems is reported and analyzed in detail: Collection by a bare tether is relatively insensitive to variations in electron density that are regularly encountered on each revolution of an orbit. This self-adjusting property of bare-tether systems occurs because the electron-collecting area on the tether is not . xed, but extends along its positively biased portion, and because the current varies as collecting length to a power greater than unity. How this adjustment to density variations follows from the basic collection law of thin cylinders is shown. The effect of variations in the motionally induced tether voltage is also analyzed. Both power and thruster modes are considered. The performance of bare-tether systems to tethered systems is compared using passive spherical collectors of . xed area, taking into consideration recent experimental results. Calculations taking into account motional voltage and plasma density around a realistic orbit for bare-tether systems suitable for space station applications are also presented.  Скачать >>


Estes R.D. et al. Bare Tethers for Electrodynamic Spacecraft Propulsion // Journal of spacecraft and rockets. — 2000. — V.37, No.2 — С.205-211.

Electrodynamic tether thrusters can use the power provided by solar panels to drive a current in the tether and then the Lorentz force to push against the Earth’s magnetic field, thereby achieving propulsion without the expenditure of onboard energy sources or propellant.Practical tether propulsion depends critically on being able to extract multiamp electron currents from the ionosphere with relatively short tethers (10 km or less) and reasonably low power. We describe a new anodic design that uses an uninsulated portion of the metallic tether itself to collect electrons. Because of the efficient collection of this type of anode, electrodynamic thrusters for reboost of the International Space Station and for an upper stage capable of orbit raising, lowering, and inclination changes appear to be feasible. Specifically, a 10-km-long bare tether, utilizing 10 kW of the space station power could save most of the propellant required for the station reboost over its 10-year lifetime. The propulsive small expendable deployer system experiment is planned to test the bare-tether design in space in the year 2000 by deploying a 5-km bare aluminum tether from a Delta II upper stage to achieve up to 0.5-N drag thrust, thus deorbiting the stage.  Скачать >>


Forward R.L., Hoyt R.P., Uphoff C.W. Terminator TetherTM: A Spacecraft Deorbit Device // Journal of spacecraft and rockets. — 2000. — V.37, No.2 — С.187-196.

This paper investigates the use of passive electrodynamic tether drag as a method for quickly removing spent or dysfunctional spacecraft from low Earth orbits (LEO). The fundamental physical principles underlying the operation of an electrodynamic drag Terminator TetherTM are developed, some practical considerations are discussed, and calculations of the area-time product are made for spacecraft orbits representative of those that will be used in the LEO satellite constellations of the next few decades. These calculations indicate that electrodynamic drag can remove a spacecraft from a typical 700–2000-km LEO constellation orbit within a few months using a Terminator Tether system massing less than 3% of the spacecraft dry mass. Although the tether increases the cross-sectional area of the satellite system during the deorbit phase, the electrodynamic drag is so many times greater than atmospheric drag at these altitudes that the total area-time product can be reduced by several orders of magnitude, reducing the risks of collisions with other satellites. Concerns regarding tether survivability can be solved by using a multiline, fail-safe HoytetherTM construction. The Terminator Tether may thus provide a cost-effective method of mitigating the growth of debris in valuable constellation orbits.  Скачать >>


Gates S.S, Koss S.M, Zedd M.F. Advanced Tether Experiment Deployment Failure // Journal of spacecraft and rockets. — 2001. — V.38, No.1 — С.60-68.

The Advanced Tether Experiment was launched into orbit aboard the National Reconnaissance Office sponsored Space Technology Experiment spacecraft on 3 October 1998. The tether experiment payload was intended to demonstrate deployment and survivability of a novel tether design as well as controlled libration maneuvers. On 16 January 1999 after deployment of only 22 m of tether, the advanced tether experiment was jettisoned from the spacecraft due to an out-of-limits condition sent by the experiment’s tether angle sensor. The essential system design is reviewed, the available flight data are presented, and likely causes of the failure are suggested.  Скачать >>


Hoyt R.P., Uphoff C.W. Cislunar Tether Transport System // Journal of spacecraft and rockets. — 2000. — V.37, No.2 — С.60-68.

We describe a space systems architecture for repeatedly transporting payloads between low Earth orbit and the surface of the moon without the signi. cant use of propellant. This architecture consists of one rotating tether in elliptical, equatorial Earth orbit and a second rotating tether in a circular low lunar orbit. The Earth-orbit tether picks up a payload from a circular low Earth orbit and tosses it into a minimal-energy lunar transfer orbit. When the payload arrives at the moon, the lunar tether catches it and deposits it on the surface of the moon. Simultaneously, the lunar tether picks up a payload from the moon to be sent down to the Earth-orbit tether. By transporting equal masses to and from the moon, the orbital energy and momentum of the system can be conserved, eliminating the need for transfer propellant. Using currently available high-strength tether materials, this system could be built with a total mass of less than 28 times the mass of the payloads it can transport. Using numerical simulations that incorporate the full three-dimensional orbital mechanics and tether dynamics, we have veri. ed the feasibility of this system architecture and developed scenarios for transferring a payload from a low Earth orbit to the surface of the moon that require less than 25 m/s of thrust for trajectory targeting corrections.  Скачать >>


Johnson L. et al. Propulsive Small Expendable Deployer System Experiment // Journal of spacecraft and rockets. — 2000. — V.37, No.2 — С.173-176.

Relatively short electrodynamic tethers can extract orbital energy to “push” against a planetary magnetic . eld to achieve propulsion without the expenditure of propellant. The Propulsive Small Expendable Deployer System experiment will use the Џ ight-proven Small Expendable Deployer System to deploy a 5-km bare aluminum tether from a Delta II upper stage to achieve ј 0.4-N drag thrust, thus lowering the altitude of the stage. The experiment will use a predominantly bare tether for current collection in lieu of the endmass collector and insulated tether used on previous missions. The Џ ight experiment is a precursor to a more ambitious electrodynamic tether upper-stage demonstration mission that will be capable of orbit-raising, -lowering, and -inclination changes, all using electrodynamic thrust. The expected performance of the tether propulsion system during the experiment is described.  Скачать >>


Kumar K., Kumar K.D. Pitch and Roll Attitude Maneuver of Twin-Satellite Systems Through Short Tethers // Journal of spacecraft and rockets. — 2000. — V.37, No.4 — С.287-290.  Скачать >>


Kumar K., Kumar K.D. Variable Attitude Compensation Through Tether for Comsats in Drifting/Inclined Geosynchronous Orbits // Journal of spacecraft and rockets. — 2000. — V.37, No.4 — С.290-293.  Скачать >>


Lanoix E. L.-M., Misra A.K. Near-Earth Asteroid Missions Using Tether Sling Shot Assist // Journal of spacecraft and rockets. — 2000. — V.37, No.4 — С.475-480.

A new space exploration technique, called tether sling shot assist, is examined for near-Earth asteroid sample return missions. A spacecraft flying near an asteroid can attach itself to the asteroid using a space tether and an anchor device. After attachment, the velocity vector of the spacecraft relative to the asteroid can be rotated, thereby modifying its heliocentric velocity. The link to the anchoring device can then be severed, and the spacecraft can reel the tether back for reuse. A simplified analysis is presented of the problem, and the technical issues related to this maneuver are discussed. A trajectory analysis software is also developed and implemented to determine the possible trajectories of near-Earth asteroid sampling missions. For each trajectory, the strengths and weaknesses of different mission scenarios are highlighted. When combined with chemical propulsion, tether sling shot assist leads to very signi. cant payload mass gains over conventional all-chemical propulsion systems.  Скачать >>


Lorenzini E.C. et al. Mission Analysis of Spinning Systems for Transfers from Low Orbits to Geostationary // Journal of spacecraft and rockets. — 2000. — V.37, No.2 — С.165-172.

An analysis of the use of spaceborne spinning tethers for a reusable system to transfer payloads with a mass up to 4000 kg from low orbits to geostationary is presented. Results indicate that a two-stage system is lighter than a single-stage tethered system with present-day tether materials. A . rst stage in low orbit and a second stage in medium Earth orbit provide the required velocity increments for injecting the payload into geotransfer orbit with the . nal orbit circularization provided by the satellite kick motor. The orbits of the stages are resonant in order to provide periodic encounters and are optimized with the goal of reducing the overall system mass. The close-approach dynamics between the second stage and the payload released from the . rst stage is simulated to demonstrate the salient features of the rendezvous process. A total of 10 transfers over two years of operation without refueling is adopted for computing the propellant needed to reboost the stages. A preliminary analysis leads to the conclusion that a two-stage tethered system is more competitive, on a mass basis, than a chemical upper stage after two transfers.  Скачать >>


Thornburg Sh.L., Powell J.D. Attachment point motion for active damping of vibrations in tethered artifical gravity spacecraft // Fourth International Conference on Tether In Space, Washington, 10–14 April, 1995. — P. 1381–1393.

Tether and end-body vibrations in tethered artificial gravity spacecraft are shown to be controllable by moving the tether attachment points on both end modules. Design guidelines for maximizing the damping are presented. Minimax amplitude controllers requiring few measurements are developed that regulate the three-dimensional motions during the cruise phase of a mission. Simulations that include nonlinear dynamics, higher-frequency tether modes, and longitudinal elasticity validate the compensators' performance. Settling times on the order of minutes are achieved, while the tether attachment point displacements are on the same order of magnitude as the tether vibrational amplitudes.  Скачать >>


Vas I.E. Tethers in Space // Journal of spacecraft and rockets. — 2000. — V.37, No.2 — С.153.  Скачать >>


Vas I.E., Kelly T.J., Scarl E.A. Space Station Reboost with Electrodynamic Tethers // Journal of spacecraft and rockets. — 2000. — V.37, No.2 — С.154-164.

The results of a study of an electrodynamic tether system to reboost the International Space Station (ISS) are presented. One recommendation is to use a partially bare tether for electron collection. Locations are suggested as to where the tether system is to be attached at the space station. The effects of the tether system on themicrogravity environment may actually be beneficial, because the system can neutralize aerodrag during quiescent periods and, if deployed from a movable boom, can permit optimization of laboratory positioning with respect to acceleration contours. Alternative approaches to tether deployment and retrieval are discussed. It is shown that a relatively short tether system, 7 km long, operating at a power level of 5 kW could provide cumulative savings of over a billion dollars during a 10-year period ending in 2012. This savings is the direct result of a reduction in the number of flights that would otherwise be required to deliver propellant for reboost, with larger cost savings for higher tether usage. In addition to economic considerations, an electrodynamic tether promises a practical backup system that could ensure ISS survival in the event of an (otherwise) catastrophic delay in propellant delivery.  Скачать >>


Vigneron F.R. et al. Tether Deployment and Trajectory Modeling for Space Plasma Science Missions // Journal of spacecraft and rockets. — 2000. — V.37, No.1 — С.78-85.

Certain space plasma science missions employ a research payload that comprises two subpayloads that are connected by an electrically conductive tether of up to 1200 m in length. The missions are conducted in suborbital trajectory attained with a small multistage launch vehicle. A reel-type deployer is used, and subpayload separation is achieved mainly by thrusters on one of the subpayloads. The focus is on modeling the deployment phases and the orientation of the configuration in space. The subpayloads are modeled as mass points in inertial space in the Earth’s gravity field. Approximate solutions are derived that provide functional relationships that are useful for mission design. Results from simulation and the approximate formulas are shown to compare well with flight dynamics measurements made with a tether force sensor and star cameras during a mission in November 1995.  Скачать >>



Внимание! Для работы с файлами формата djvu необходимо скачать специальный плагин к браузеру . Смотрите также здесь.




Космические тросовые системы:


История

В.В. Белецкий

КТС, стабилизированные вращением

Радиальные КТС

Литература



Главная Новости Наука ...И вокруг нее Ее поддержка Поиск информации Библиотечка О нас

Этот сайт создан при помощи программы Globus SiteBuilder
Этот сайт создан при помощи программы Globus SiteBuilder
Hosted by uCoz