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Certain space plasma science missions employ a research payload that comprises two subpayloads that are
connected by an electrically conductive tether of up to 1200 m in length. The missions are conducted in suborbital
trajectory attained with a small multistage launch vehicle. A reel-type deployer is used, and subpayload separation
is achieved mainly by thrusters on one of the subpayloads. The focus is on modeling the deployment phases and
the orientation of the con� guration in space. The subpayloads are modeled as mass points in inertial space in
the Earth’s gravity � eld. Approximate solutions are derived that provide functional relationships that are useful
for mission design. Results from simulation and the approximate formulas are shown to compare well with � ight
dynamics measurements made with a tether force sensor and star cameras during a mission in November 1995.

Nomenclature
a, b = superscripts or subscripts for aft and forward

payload, respectively
[c], ci = subpayloads basis and corresponding unit vectors
Fb = thruster force matrix on body b, {F1, 0, 0}T , N
Fb = thruster force vector on body b, N
Fga , Fgb = gravitational force vectors on mass points, N
Gmb = magnetic hysteresis brake detent torque, N-m
I0, Id = moment of inertia values of reel (see Table 1),

kg-m2

I ( h ) = moment of inertia of reel and wound tether about
rotation axis, kg-m2

[i], ii = inertial basis and corresponding unit vectors
K = spring constant of separation spring, N/m
L f = tether length at end of deployment, m
L( h ) = tether length variable (unstrained), m
ma , mb = mass of aft and forward payloads, kg
me = effective mass, mamb / (ma + mb ), kg
m t ( h ), m t0 = mass of tether on reel as a function of h , and its

initial value, kg
n = matrix of components of n in [c] basis, {n1 , n2, n3}T

n = unit vector along R
p(t ) = linear momentum relative to the mass center,

kg-m/s
Q( a , b ) = transformation matrix from [i] to [c]
R = position vector of center of mass, km
Rcm = scalar magnitude of R, km
R1 , R2, R3 = components of R in [i] basis, km
Ra , Rb = position vectors of aft and forward masses
r = matrix of separation vector resolved in [c] basis,

{r1, 0, 0}T , m
r = separation vector between mass points, rb ¡ ra , m

Presented as Paper 98-4553 at the AIAA/AAS Astrodynamics Special-
ist Conference and Exhibit, Boston, MA, 10–12 August 1998; received 10
January 1999; revision received 16 June 1999; accepted for publication 25
June 1999. Copyright c° 1999 by the authors. Published by the American
Institute of Aeronautics and Astronautics, Inc., with permission.

¤ Professor (Adjunct), Department of Mechanical and Aerospace Engi-
neering. Senior Member AIAA.

†Graduate Student, Department of Mechanical and Aerospace Engineer-
ing.

‡Research Scientist, Space Science Program. Member AIAA.
§Senior Engineer, Space Business Group. Member AIAA.

Çr a
10 , Çr b

10 = velocities of subpayloads at time t0 (just after
spring impulse), m/s

ra , rb = vectors from mass center to mass points a and b, m
T = tether tension matrix, {T1 , 0, 0}T , N
T = tether tension vector, N
ts = time at tether severance, s
t0 = time at subpayload separation (after spring

release), s
t1 = time at end of thruster � ring, s
Us = strain energy in separation spring, N-m
z f , zm = reel radii, full deployment and mean value, m
z0, zd = radius parameters of reel (see Table 1), m
z( h ) = reel radius variable, m
a , d = right ascension and declination of separation vector

(Fig. 5)
b = angle between R (or n) and r
D = displacement of separation spring, m
h , h d = reel turn angles (see Table 1), rad
k = separation parameter in Eq. (59), 1/s
l = gravitational constant, 398,601 km3/s2

x , x i = angular velocity matrix, and components resolved
in [c] basis, rad/s

w = angular velocity of [c] relative to [i], rad/s
± = vector differentiation viewed from [i]

Introduction

C ERTAIN space plasma missions employ a science payload that
comprises two subpayloads that are connected by an electri-

cally conductive tether. A mission of this type is conducted in a sub-
orbital trajectory that is attainedwith a small multistage launch vehi-
cle. Examples are the OEDIPUS A and C missions1,2 (the acronym
OEDIPUS is derived fromObservation of ElectricField Distribution
in Ionospheric Plasma, a Unique Strategy) and the NASA CHARGE
missions.3 Of these missions, the OEDIPUS C in 1995 was the most
extensive in terms of science instruments, mission complexity and
duration, apogee height, and tether length. Because the mission in-
cluded tether development as part of its objective,4 the payload was
well instrumented for monitoring of tether operations .

The mission pro� le of OEDIPUS C is shown in Fig. 1. The pay-
load, comprising two rocket subpayloads and a connecting tether,
is shown in various stages of evolution in Fig. 1. The launcher was
a Black Brant 12 launch vehicle, and the launch site was located at
Poker Flats, Alaska. The suborbital trajectoryof the mass center had
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Fig. 1 Phases of the OEDIPUS-C mission.

Fig. 2 OEDIPUS-C reel-type deployer.

an altitude at apogee of about 824 km, and the payload impacted
Earth in the Beaufort Sea of the Arctic Ocean. In the initial stages of
the mission, the two subpayloads were connected and were ejected
from the launch vehiclewith spin stabilizationabout the longitudinal
axis. Eight booms were then deployed. Subpayload separation was
then initiated by payload pyrotechnics and the action of a payload
separation pushoff spring. Cold gas thrusters on the forward pay-
load were activated immediately and were � red for 14.7 s; they
were the main source of impulse for separation. During separation,
an electrically conductive 1-mm-diam tether was deployed from a
reel deployer to a length of 1174 m. The reel deployer is shown in
Fig. 2. The reel has a magnetic hysteresis brake that prevents reel
rotation if tether-induced torque is less that a detent value of 0.0512
N-m and that slips and applies a constant retarding reel torque if
tether-induced torque equals or exceeds 0.0512 N-m. During tether
deployment, the reel torque was essentially constant, the radius of
the stowed tether decreased from 0.0579 to about 0.03 m, and the
tether tension increased from approximately 0.5 to 1.1 N. After sep-
aration was complete the tension dropped to a lower value, and the
magnetic hysteresis brake prevented further reel rotation. During
the � ight, the orientation of the con� guration changed slowly due to
the gravity gradient on the very large con� guration. The tether was
severed for the postapogee part of the trajectory. Comprehensive
� ight dynamics data were acquired during the mission, including
tether force sensor data and a video taken with a camera mounted
on the aft payload.

The OEDIPUS missions have demonstrated several elements of
tether technology that are relevant to future space missions that
may consider tethers. Speci� c elements are the simple reel type
of deployer with magnetic hysteresis brake, the conductive tether,
the use of a thruster as a main source of separation impulse for
deployment, the spin stabilization in conjunction with tethers, and
the tether severing devices.

The dynamics of this type mission is very complex, and the cre-
ation of a single comprehensive computer model is neither the ef� -
cientnor the practicalway to support missiondesign and sizingof the
numerous deployment and stabilization elements. For OEDIPUS,
the modeling was developed in two broad categories: 1) idealiza-

tion of the payloads as mass points and analysis of deployment,
separation, and changes in orientation, and 2) spin stabilization dy-
namics of the con� guration about the line joining the mass centers
of the end bodies.5 ¡ 7 This paper relates to the � rst of these two cate-
gories; itdescribesmodel formulation and design laws and compares
modeling results with OEDIPUS-C � ight data.8,9

Trajectory and Deployment Formulation
In this section, the basickinematicand kinetic relationships for the

trajectory, tether, and reel arederived. The vector algebra convention
described in Ref.10 is used. Notation similar to that of Ref. 11 is
adopted. A square-bracketed boldface symbol (e.g., [c]) denotes a
vector basis (vectrix). A boldface symbol refers to a vector (e.g.,
R); its corresponding 3 £ 1 column matrix is denoted by the same
symbol without boldface (e.g., R); and the corresponding scalar
components of the matrix are denoted by the same symbol with
a subscript (e.g., R1 , R2 , R3). Any special designation to a vector
is indicated with a superscript (e.g., Ra refers to the aft payload).
The tilde on top of a column matrix indicates the skew symmetric
3 £ 3 matrix associated with the vector cross product. Designations
to ordinary scalar (nonvector) parameters are made with subscripts
(e.g., ma denotes the mass of the aft payload).

Vector Equations of Motion of Mass Points
The subpayloads are shown inFigs. 3 and 4 relative to a geocentric

reference basis [i], where i1 is in the direction of Aries and i3 is
along the Earth’s north pole. The subpayloads are idealized as mass
points, with the aft and forward payloads having masses ma and
mb , respectively. The tether is shown as partially deployed, and the
mass of the deployed portion is assumed negligible relative to the
subpayloads. The force balance for the subpayloads is shown in
Fig. 4:

maR
a

= Fga + T (1)

mbR
b

= Fgb ¡ T + Fb (2)

From Fig. 3,

Ra = R + ra (3)

Rb = R + rb (4)

ra and rb are referenced from the center of mass and, thus,

mara + mbrb = 0 (5)

Fig. 3 Position and separation
vectors.

Fig. 4 Forces on mass points.
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The gravitational force can be derived in the form of a series expan-
sion in terms of products (r ¢ R) / (R ¢ R) to third order and is

Fgi = ¡
¡
l m i ê R3

cm

¢
R +

¡
l m i ê R3

cm

¢
{3(n ¢ ri )n ¡ ri } (6)

where i = a or b. In Eq. (6), Rcm =
p

(R ¢ R), and n is the unit vector
along the trajectory radius, that is, n = R/ Rcm. Substitution of Eqs.
(3), (4), and (6) into Eq. (1) leads to

maR + mar a = ¡
¡
l ma ê R3

cm

¢
R

+
¡
l ma ê R3

cm

¢
{3(n ¢ ra) ¢ n ¡ ra} + T (7)

Similarly, Eq. (2) becomes

maR + mar b = ¡
¡
l mb ê R3

cm

¢
R

+
¡
l mb ê R3

cm

¢
{3(n ¢ rb) ¢ n ¡ rb} ¡ T + Fb (8)

Trajectory of the Mass Center
Addition of Eqs. (7) and (8) and use of Eq. (5) results in

(ma + mb)R = ¡
l (ma + mb)

R3
cm

R + Fb (9)

Equation (9) provides for the calculationof the trajectoryof the mass
center. Equation (9) is uncoupled from ra and rb , and thus R and
n may be determined separately from deployment dynamics. For
pre� ight analysis, R may be calculated by standard methods, given
the trajectory parameters of the mission. For OEDIPUS C, tracking
data were also available after � ight, from which R could be deduced
directly. OEDIPUS C was in a near-polar suborbital elliptical tra-
jectory, with apoapsis of 7184 km (apogee altitude of 824 km) and
periapsis of 106.5 km (the suborbital elliptical trajectory intersects
the Earth). The � ight time was approximately 18 min.

Separation Vector
Divide Eq. (9) by ma + mb and combine the result with Eq. (8)

to obtain

mbr b =
¡
l mbê R3

cm

¢
{3(n ¢ rb)n ¡ rb} ¡ T + [ma / (ma + mb)]Fb

(10)

The separation vector r between the two payloads is shown in Fig. 3
and is

r = rb ¡ ra (11)

Combine Eq. (11) with Eq. (5):

rb = [ma / (ma + mb)]r (12)

Substitution of Eq. (12) into Eq. (10) then leads to the following
differential equation for the separation vector:

mer =
¡
l me ê R3

cm

¢
{3(n ¢ r)n ¡ r} ¡ T + (m e / mb)Fb (13)

where me is the effective mass:

m e = mamb / (ma + mb) (14)

Equation (13) provides for the calculation of r and regards R and n
as input functions as described earlier.

Separation Vector in Right Ascension and Declination Variables
The most convenient scalars to describe r in the tethered payload

application are the separation distance measured along the line join-
ing the two mass points j rj and the declination d and right ascension
a of the separationvector asmeasuredrelative to the inertialbasis [i].
This choice leads to equations that are compatible with a model of
the reel deployer and also with � ight data from subpayload-mounted
star trackers7,8 and the tether force sensor.9

The subpayloads [c]basis is de� ned relative to the inertial[i]basis
by 1) a rotation about i3 by angle a , leading to the [i0 ] basis, where

Fig. 5 Right ascension and declination
variables.

i1, r, and i03 are coplanar, and 2) an additional rotation about i 0
2 by an

angle d in the negative i02 direction, to arrive at the [c] basis, where
c1 is aligned along r, the separation vector. The transformation is
shown in Fig. 5. It is

[c] = Q[i] (15)

where Q is the orthonormal matrix:

Q( a , d ) =

2

4
cos d cos a cos d sin a sin d

¡ sin a cos a 0

¡ sin d cos a ¡ sin d cos a cos d

3

5 (16)

The angular velocity of [c] relative to [i] is

w = [c]T x = [c]T

8
<

:

x 1

x 2

x 3

;
=

;
(17)

where

x 1 = Ça sin d , x 2 = ¡ Çd , x 3 = Ça cos d (18)

The components x 1 and x 3 are not independent. By combining the
� rst and last elements of Eq. (18),

x 1 = x 3 tan d (19)

The inverse of Eq. (18) is, thus,

Çd = ¡ x 2 (20)

Ça = x 3 / cos d (21)

The resolution of r in the [c] basis has the form

r = [c]T r (22)

and r = {r1, 0, 0}T because c1 lies along the separation vector. The
separation distance between the two mass points is, thus, described
by the scalar variable r1(t). Likewise, the vectors T and Fb have the
following component forms:

T = [c]T T , Fb = [c]T Fb (23)

where T = {T1 , 0, 0}T and Fb = {F b
1 , 0, 0}T . The natural basis in

which to resolve R is [i], that is,

R = [i]T R (24)

where R = {R1 , R2 , R3}T . Then n is

n = [i]T

8
<

:

R1 / Rcm

R2 / Rcm

R3 / Rcm

;
=

;
(25)

It is also convenient to de� ne components of n in the [c] basis:

n = [c]T n (26)
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where n = {n1, n2 , n3}T . Equation (15) may be recon� gured as
[i]T = [c]T Q , and then it follows from Eqs. (25) and (26) that

n =

8
<

:

n1

n2

n3

;
=

; = Q

8
<

:

R1 / Rcm

R2 / Rcm

R3 / Rcm

;
=

;
(27)

The next step is to obtain the matrix form of Eq. (13) resolved in
the [c] basis. The vector differential r resolves to r = [c]T (r̈ + Ç˜x r +
2 ˜x Çr + ˜x ˜x r). Substitution of the foregoing plus Eqs. (26), (22), and
(23) into Eq.(13) gives the intermediate result

r̈ + Ç˜x r + 2 ˜x Çr + ˜x ˜x r =
¡
l ê R3

cm

¢
{3(r T n)n ¡ r}

¡ (1/ me)T + (1/ mb)F b (28)

In Eq. (28), ˜x is

˜x =

2

4
0 ¡ x 3 x 2

x 3 0 ¡ x 1

¡ x 2 x 1 0

3

5 (29)

Reduction of Eq. (28) to scalar component form results in the fol-
lowing key equations:

r̈1 =
©¡

l ê R3
cm

¢¡
3n2

1 ¡ 1
¢

+ x 2
2 + x 2

3

ª
r1 ¡ T1 / me + Fb

1
ê mb

(30a)

Çx 3 + 2( Çr1 / r1) x 3 + x 2 x 3 tan d = 3
¡
l ê R3

cm

¢
n1n2 (30b)

Çx 2 + 2( Çr1 / r1) x 2 + x 2
3 tan d = ¡ 3

¡
l ê R3

cm

¢
n1n3 (30c)

Initial Velocity Imparted by the Separation Spring
The action of the separation spring between the two payloads may

be modeled as an impulse that impartsan initialvelocitycondition on
the separation variable Çr1(t ) at the time t0. Consider the incremental
dynamics of the subpayloads along the separation c1 direction. With
reference to Figs. 3 and 5, rb(t ) = [c]T {r b

1 (t), 0, 0}T and ra(t ) =
¡ [c]T {r a

1 (t ), 0, 0}T . The separation vector is r(t) = [c]T {r1(t ),
0, 0}T . Therefore,

r1(t ) = r b
1 (t ) ¡ r a

1 (t ) (31)

The linear momentum of the two subpayloads relative to the mass
center is in the c1 direction, and its scalar magnitude is

p(t ) = mb Çr b
1 (t ) ¡ ma Çr a

1 (t ) (32)

Linear momentum is conserved over the impulsive spring release.
Immediately before spring release and subpayload separation, Çr a

1
and Çr b

1 are zero and, thus, p = 0. At time t0, which is immediatelyaf-
ter the impulsive spring release, linear momentum is mb Çr b

10 ¡ ma Çr a
10.

Hence,

mb Çr b
10 ¡ ma Çr a

10 = 0 (33)

The total energy (kinetic plus potential energy) is also assumed con-
served over the impulsive spring release. Before release the kinetic
energy is zero, and the potential energy is the spring’s strain energy
Us = 1

2 K D 2 . After spring release, the strain energy is zero, and the
kinetic energy is 1

2 mb ( Çr b
10)2 + 1

2 ma( Çr a
10)2. Hence,

1
2
mb

¡
Çr b
10

¢2 + 1
2
ma

¡
Çr a
10

¢2
= Us (34)

Equations (33) and (34)may be solved for the subpayload velocities:

¡
Çr a
10

¢2
= 2m eU

2
s
ê m2

a ,
¡
Çr b
10

¢2
= 2meU

2
s
ê m2

b (35)

where m e = mamb / (ma + mb). Equation (31) may be squared to
give Çr 2

10 = Çr a2
10

+ Çr b2
10

+ 2 Çr a
10 Çr b

10 . Combination with Eq. (35) yields the
formula for the initial condition at time t0:

Çr10(t0) =
p

2Us / m e (36)

Deployer
The reel type of deployer is shown in Fig. 2. It consists of a reel, a

magnetic hysteresis brake, and a stored tether. In � ight, the tether is
pulled off the reel by the tension initiated by the payload separation
spring and thrusters.

Kinematics
Before � ight, the tether is very carefully wound on to the reel,

and the relationship of reel turn angle h to reel radius z and unstored
length L is recorded. A detailed computer model of the layer-by-
layer deployment that generates z( h ) and L( h ) was developed. A
simpler approximate analytical model that is suited for algebraic
analysis is described here. The measured radius data were noted in
test data to be a linear function of the measured reel rotation angle
(to � rst order), and thus z can be approximated by

z( h ) = z0 ¡ (z0 ¡ zd )( h / h d ) (37)

The relation between L , z, and h is

dL = z dh (38)

Combining this with Eq. (37) and integrating gives

L( h ) = z0 h ¡ 1
2
[(z0 ¡ zd ) / h d ]h 2 (39)

Equation (39) matches the measured data to within 0.25%. (With a
very small adjustment of z0 and/or zd , the formula could forecast the
� nal deployed length perfectly.) The mass of the tether remaining
on the reel during deployment is a function of the deployed length
and is

m t ( h ) = m t0 ¡ q L( h ) (40)

The moment of inertia of the reel and tether is

I = Id + It0 ¡ 1
2
q L

¡
z2

0 + z2
¢

(41)

and thus depends on z and implicitly on h .

Kinetics
The magnetic hysteresis brake exerts a constant retarding torque

Gmb while slipping if T1z ¸ Gmb, where T1 is the tether force and
z is the radius of the reel. If T1z falls below Gmb, the brake stops
slipping and holds its angular position. A torque balance during
deployment (brake slipping) of the reel and rolled-on tether about
the reel rotation axis results in

I
d2 h

dt 2
= T1z ¡ Gmb (42)

The magnetic hysteresis clutch cannot reverse and retract the de-
ployed tether. Thus, Eq. (42) is accompanied by the condition

d h

dt
¸ 0 (43)

Basic Model with Inextensible Tether
The basic dynamic characteristicsrelevant to planning and design

for this category of mission can be derived with a model in which
the deploying tether is inextensible (longitudinal � exibility will be
discussed further in a later section). For an inextensible tether,

r1(t ) = L(t) (44)

From Eq. (38),

dL

dt
= z

dh

dt
(45)

Because dz / dt is very small, d2L /dt 2 »= z d2 h / dt 2 . Combining this
with Eq. (42) results in

T1 = ( I / z2) L̈ + Gmb / z (46)
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Combine Eqs. (44) and (46) with Eq. (30a) to obtain
¡
1 + I ê m ez

2
¢
L̈ =

©¡
l ê R3

cm

¢¡
3n2

1 ¡ 1
¢

+ x 2
2 + x 2

3

ª
L

¡ Gmb / mez + Fb
1
ê mb (47)

Equation (47) is basically a force balance along the tether direction.
The term on the left-hand side models the inertia of the payloads
and reel to separation. The � rst term on the right models the gravity
gradient and centrifugal forces that separate the subpayloads and is
proportional to L. The second term models the separation action of
the thruster on the forward subpayload. The third term models the
retarding action of the magnetic hysteresis brake. For the deploying
inextensible tether, Eqs. (30b) and (30c) become

Çx 3 + 2( ÇL / L) x 3 + x 2 x 3 tan d = 3
¡
l ê R3

cm

¢
n1n2 (48)

Çx 2 + 2( ÇL / L) x 2 ¡ x 2
3 tan d = 3

¡
l ê R3

cm

¢
n1n3 (49)

Equations (47–49), together with Eqs. (42) and (45), have been
solved for various subphases of the OEDIPUS-C missionby analytic
and/or numerical computer solution as described in the following
sections.

Flight Data from OEDIPUS C
The phases of the mission are shown in Fig. 1. They are 1) launch,

separation from launch vehicle, and attitude reorientation (t =
0–174 s); 2) initiation of deployment by thrusters (t = 0–174 s);
3) tether deployment phase, where thruster force is zero and L
increases to full length (t = 174–453 s); 4) fully deployed phase
(t = 453–623 s); and 5) motion of mass points after tether severance
(t = 634–947 s). The tension history that was measuredwith a tether
force sensor during the enumerated phases is shown in Fig. 6. The
right ascension and declination data measured with a star camera
are shown in Figs. 7 and 8. The physical parameters of OEDIPUS
C are given in Table 1.

Simulation and Analysis and Comparison
with Flight Data

This section presents analysis and/or simulation of each of the
enumerated phases and compares results with the � ight data of
OEDIPUS C.

Initiation of Deployment by Thrusters
The nonlinear differential equations of the foregoing analysis are

singular for L = 0 and are ill conditioned if L is small. The best
way to deal with this problem is to use an approximate analytical
solution for the initial stages of deployment. When L is small, the
dominant separation force is the due to thrusters, and the gravity
gradient and centrifugal forces are negligible. For small L , Eq. (47)
is approximately

¡
1 + I ê me z2

¢
L̈ = ¡ Gmb / mez + Fb / mb (50)

Fig. 6 Tension history, measured with OEDIPUS-C tether force
sensor.

Table 1 OEDIPUS C parameters

Parameter Symbol Value Unit

Gravitational constant l 398,601 km3 /s2

Mass of aft payload ma 93.0 kg
Mass of forward payload mb 115.4 kg
Length of deployed tether L f 1,174 m
Tether mass/length q 0.0027554 kg/m
Radius of undeployed tether z0 0.0579 m
Radius of inner spool zd 0.0132 m
Initial length of tether on spool —— 1,305.49 m
Number of turns of tether wire h d /2p 5,830 turns
Initial mass of tether on spool mt0 3.59236 kg
Moment of inertia of inner spool Id 0.0004 km-m2

Initial inertia of tether wire I0 0.00631 kg-m2

Magnetic brake torque Gmb 0.0512 N-m
Pitch of helical tether —— 0.635 m
Stiffness associated with helix —— 0.0034 N-m
Longitudinal material stiffness EA 9,000 N
Thrust level F b

1 59.38 N
Time of separation t0 174 s
Burn time of thrust —— 14.7 s

Fig. 7 Right ascension and declination history, measured with
OEDIPUS-C star camera.

Fig. 8 Right ascension vs declination � ight data.
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Substitute this into Eq. (46) to obtain the tensionduring deployment:

T1 =
I

z2

³
1

1 +
¡
I ê me z2

¢
´

F b

mb

+
Gmb

z (1 ¡ I

me z2

´
(51)

Equation (51) shows that the initial tether tension is comprises
two components, one due to the thruster force and the other due
to the magnetic hysteresis brake. For OEDIPUS C (Table 1),
I0 / mez2

0 = 0.039, which indicates that the main inertia to separa-
tion is due to the payload masses and the reel contribution is about
3.9%. At the initiation of deployment, where z = z0 = 0.0579 m,
Eq. (51) yields

T1 = (0.994 + 0.849) N = 1.84 N

Thus, the thrusters contribute 54% of the tether tension, and the
magnetic brake contributes 46%. Figure 6 shows the OEDIPUS
� ight data for tension vs time.9 The data show an initial spike of
up to 7.4 N and then a relaxation to near zero. Then the thrusters-
on phase begins at 174 s and lasts for 14.7 s to time 188.7 s. The
tension data � uctuate, likely due to the reel bearings and � exibility
in the tether. The initial tension in the � rst 14.7 s is observed to
average about 2 N, which agrees reasonably well with the calculated
1.84 N.

Equation (50) may be integrated twice to provide an expression
for length vs time:

L(t ) = ÇL0(t ¡ t0) +
1©

1 +
¡
I ê mez2

¢ª( Fb

mb
¡ Gmb

mez

´
(t ¡ t0)2

2

(52)

The radius z was assumed constant in the preceding integration. ÇL0

is due to the separation spring [=
p

(2Us / m e)] and is very small
relative to the thruster impulse for OEDIPUS C. The thrusters are
turned off by onboard logic that operates from the reel encoder. The
logic was set to turn off the thruster when ÇL reached a value of
7 m/s. Flight data shows that turnoff occurred 14.7 s after payload
separation, that is, at t1 = t0 + 14.7 s = 188.7 s. A calculation with
Eq. (52) and the parameters of Table 1 yields

L(t1) = 51.7 m, ÇL(t1) = 7.04 m/s (53)

Thus the OEDIPUS-C data are in accord with Eq. (52).

Deploying Phase and Deployment Termination
After thruster turnoff, L 6= 0 and this main phase of the deploy-

ment can be simulated using a numerical computer solution. Equa-
tions (20), (21), (45), (47), (48), and (49) are six coupled scalar dif-
ferential equations in L , x 2, x 3 , h , a , and d . Kinematic variables z
and I , which are linked algebraically to h , are also present in the dif-
ferential equations; they can be provided for either with the detailed
kinematic data of the reel or with Eqs. (37) and (41). Rcm, n1 , n2,
and n3 are known input functions calculable from the trajectory.
The equations were programmed for numerical solution with a
Runge –Kutta integration routine using MATLAB®. This phase was
simulated with Fb

1 = 0 and the initial conditions at t1 = 188.7 s.
Equations (53) are the initial conditions on L and ÇL . The initial con-
ditions for a and d are taken from Fig. 7 and are 349 and 56.2 deg,
respectively. Figure 9 gives the simulation data, where Çh and ÇL
have maxima at t1 = 188.7 s and slowly decrease as deployment
progresses. The termination of deployment is recognized to be the
point at which d h / dt reaches zero. At this point, the initial sepa-
ration impulse plus a gravity gradient impulse is fully dissipated
by the magnetic clutch, and ÇL reaches zero. As the bodies have,
thus, stopped moving relative to each other, the tension drops to
near zero. The magnetic hysteresis brake cannot retrieve the tether
and so d h / dt remains at zero thereafter. The end of deployment in
the simulation is at 452 s, and this compares with 453 s of the � ight
data (Fig. 6). Also the simulation calculates L to be 1133 m, which
is within 3% of the � ight data value of 1174 m. The simulation
produces tensions of 0.875 and 2.21 N at the beginning and end of

Fig. 9 Simulation results of deployment and deployment termination.

deployment, respectively, and this compares with average values of
Fig. 6 of about 1.0 and 2.0 N.

The nature of the tether deployment can be illustrated by an ap-
proximate solution of Eq. (47) in which the gravity gradient and
centrifugal forces are ignored. The equation to be solved is essen-
tially Eq. (50) with Fb

1 = 0 and the initial conditions of Eq. (53).
Integration once results in

ÇL = ÇL(t1) ¡ 1©
1 +

¡
I / m ez2

m

¢ª(Gmb

zm

´
(t ¡ t1) (54)

A second integration gives

L = L(t1) + ÇL(t1)(t ¡ t1) ¡ 1©
1 +

¡
I ê mez2

m

¢ª(Gmb

zm

´
(t ¡ t1)2

2

(55)

In the preceding integration, z is approximated by a constant mean
value, zm = (z1 ¡ z f ) / 2. Deployment ends where ÇL = 0 in Eq. (54).
Equation (54) yields 456 s for OEDIPUS-C parameters. This is in
good agreement with the � ight value of 453 s (see Fig. 6). Equa-
tion (55) yields a length L = 992 m, which is 15% less than the � ight
value of 1174 m. A corresponding approximate expression for the
tension in this subphase is

T1 = (Gmb / zm)
¡
1 ¡ I ê me z2

m

¢
(56)

This formula yields tensions of 0.84 and 2.26 N and beginning and
end of deployment, respectively. The tensions correspond to � ight
values (Fig. 6) of about 1.0 and 2.0 N, respectively.
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Fully Deployed Phase
The reel’s angular turn rate Çh and the payload separation rate

ÇL reach zero at 453 s, and this marks the end of deployment and
the start of the fully deployed phase. The tension drops, and the
magnetic hysteresis brake locks into one of its detent positions. If
the tether were truly inextensible, the tension would drop suddenly
to near zero. However, the � ight data of Fig. 6 show a more complex
situation,which has been investigated in Ref. 7. The � ight-measured
tension in this phase (t = 453–623 s) is noted to be very small most
of the time, but in addition a tension increase/decrease is observed
at about 570 s. Basically, at the end of deployment at t = 453 s, the
tether has a longitudinal elastic stretch u due to the tension, and
the separation distance r1 is actually L + u. The relative payload
motion stops when the reel stops, and then the elastic force causes
the payloads to rebound toward each other (i.e., u ! 0 and r1 ! L );
the tension drops to near zero over a time period of several seconds.
Beyond this point, the gravity gradient and centrifugal effectbecome
dominant forces on the two end bodies. The sum of the gravity
gradient and centrifugal force in the tether direction can be deduced
from Eq. (30a) with Çr1 = 0 and Fb

1 = 0 and is

N = me

©¡
l ê R3

cm

¢
(3 cos2 b ¡ 1) + x 2

2
+ x 2

3

ª
r1 (57)

where b is the angle betweenc1 and n, that is, between the separation
vector and the local vertical (or equivalently between r and R). Also
cos b = n1 (n1 is also equal to cos d cos a , which is a less convenient
expression in this context).

In general, N of Eq. (57) may be positive (which would cause
tension in the tether) or negative (which would cause the payloads
to approach each other and the tether to become slack), depending
on the value of b , x 2 , and x 3 . If x 2 and x 3 are negligible, then N
would be positive if 3 cos2 b ¡ 1 > 0, or equivalently if b < 59.7
deg. If b > 59.7 deg, N would be negative.

The OEDIPUS-C � ight data of b are evident in Fig. 8; b is the
difference between the separation vector and the local vertical and
is about 10–12 deg over the duration of the mission. Also the x can
be evaluated from Fig. 7 and they are found to be very small. Thus,
N of Eq. (57) is positive and induces separation of the payloads
and a tensioned tether. Equation (57) yields a calculated value of
approximately 0.12 N, which causes the payloads to separate. The
tether stretches due to � exibility contributed by a residual-stress
helix in the tether (the tether is stored on the reel, and when deployed
has a helical preset) and also to material � exibility E A / L. Because
the induced tension in the tether is considerably less than Gmb / z
of about 1 N, the magnetic hysteresis brake will remain locked. As
the payloads separate, the tether stretches and resists the separation
motion; the tension history in Fig. 6 shows a rises/fallat about 560 s
that is indicative of the payload separation stopping and acquiring
an equilibrium state.5,7 Although these effects are sensed clearly
with the tether force sensor, the associated length changes are small
(about 2 m or less).

Simulation of a and d during this phase are included in Fig. 9.
The � ight data of Fig. 7 are also superimposed on the simulation
results. The attitude motion is noted to be small (about 1.5 deg of
arc), and simulation and � ight data are in accord.

Posttether Severance Phase
In the OEDIPUS-C mission, the tether was severed simultane-

ously at the aft and forward payloads with a guillotine-type cutter
at ts = 623 s. The dynamics after separation may be modeled in this
phase with Eqs. (20) and (21) and Eqs. (30) with T1 = 0 and Fb

1 = 0.
The initial conditions are taken from the � ight data. From the � ight
data of Fig. 7, r1(ts) = L f = 1174 m, Çr1(ts) = 0, and a (ts) and d (ts).
Figure 10 shows the simulation result. Also the � ight data for atti-
tude is superimposed. The simulation and � ight data are noted to be
in accord.

An approximate analytical solution for r1(t) for this phase may
be obtained from Eq. (30a):

r̈1 =
©¡

l ê R3
cm

¢
(3 cos2 b ¡ 1) + x 2

2 + x 2
3

ª
r1 (58)

Fig. 10 Simulation vs � ight
data; posttether severance.

Rcm , b , x 2 , and x 3 are approximately constant during this phase. If
the coef� cient of r1 is regarded as constant, the differential equation
can be solved. The solution is

r1(t ) = Ae k (t ¡ ts ) + Be ¡ k (t ¡ ts ) (59)

where k = [{l (3 cos2 b ¡ 1) / R3
cm}+ x 2

2
+ x 2

3 ]1/2 . With the initial
conditions r1(ts) = L f and Çr1(ts) = 0, one obtains A = B = L f /2,
and Eq. (59) then becomes

r1(t ) = L f cosh k (t ¡ ts ) (60)

Equation (60) has the shape of the simulation curve of r1(t ) of
Fig. 10. For OEDIPUS C, Eq. (60) yields 1302 m at t = 943 s (with
b = 10 deg), which compares with the simulation value in Fig. 10
of 1308 m.

Conclusions
Mathematicalmodels and simulations have been successfullyde-

veloped for the deployment, postdeployment, and posttether sever-
ance phases of the OEDIPUS type of space tether mission. As well,
approximate solutions of the model are obtained that lead to a func-
tional formula that may be used in mission planning and concept
design. The mathematical modeling is demonstrated to be in agree-
ment with � ight-measured tether tension and orientation data from
the OEDIPUS-C mission. Although the modeling has been devel-
oped for the OEDIPUS-C type of mission, the method and basic
form of equations apply more widely and may be adapted to other
categories of orbital tether missions.
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