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Nomenclature
a j = x coordinate of attachment point j ; is 0 for

j =1, 2 and ( ¡ 1) j a for j =3, 4
C = E A / (mL ref X

2
ea); TSS rigidity parameter

c j = z coordinate of attachment point j ; is ( ¡ 1) j a for
j =1, 2 and 0 for j = 3, 4

E A = tether modulus of rigidity, N
Ix , Iy , Iz = principal satellite moments of inertia about x , y,

and z axes, respectively
ib = orbit inclination, deg
j = tether points on satellite; 1, 2, 3, 4 for A, B, C, D,

respectively
K p = inertia parameters: p = 1, 2, . . . , 5;

K1 = ( Ix ¡ Iy) / Iz , K2 = (Iy ¡ Iz) / Ix ,
K3 = ( Ix ¡ Iz) / Iy , K4 = 1 ¡ K1K5 ,
K5 = (K3 ¡ 1) / (K1 K3 ¡ 1)

L j , L j0 = stretched and nominal unstretched length of j th
tether, respectively

L ref = reference length; (Ix / m)1/2

L t0 = nominal unstretched lengths of four tethers
L0 = L when tether strains are zero
l , l j , l j0 , lt0 = L / L ref, L j / L ref, L j0 / L ref , and L t0 / L ref,

respectively
U (²j ) = 1 for ² j ¸ 0 and 0 for ² j < 0
² j = tether strains in the j th tether
k j = Lagrange multipliers
X ea = spin velocity of the Earth
(.̂) = (.)/ L ref

(.) j = (.) for j th tether; j =1, 2, 3, 4 for tethers
E ¡ A, E ¡ B, E ¡ C , E ¡ D

(.)0 = (.) at h (true anomaly) =0
j (.) j max = maximum amplitude of (.)
(.) 0 , (.) 0 0 = d(.)/ d h and d2(.)/d h 2 , respectively

Introduction

T HE geostationary communications satellites undergo signi� -
cant continual changes in their orbital elements under the in-

� uence of environmental perturbations. Of these, the adverse secular
effect on the orbital inclination is of considerable practical impor-
tance. It causes the satellites to undergo continually growing peri-
odic lateral/longitudinal satellite drifts as viewed from the ground
terminal. Rather expensive onboard fuel is periodically utilized for
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station-keeping maneuvers to ensure continual, uninterrupted com-
munications. Here, it is proposed to explore the feasibility for de-
veloping a variable attitude controller using tethered auxiliary mass
for continual satellite tilting so as to effectively compensate for the
periodic longitudinal and lateraldrifts for satellitesin 24-h nonequa-
torial circular orbits with respect to an equatorial ground station.
This study is based on results of some earlier investigations1 ¡ 7 that
have established the effectiveness of the tethered satellite system
(TSS) for satellite attitude stabilization and maneuver. In the light
of the rapid worldwide growth in demands on communications ca-
pacity, extension of the satellite applications to new areas such as
information technology and the associated problems of excessive
overcrowding of the geostationary ring,8 ¡ 10 this investigation may
be of considerable signi� cance.

Proposed Controller Model and Equations of Motion
This investigation considers a satellitemoving in a nonequatorial,

24-h orbit. The satellite is assumed to be verticallyabove the ground
station while passing over the nodes (Fig. 1). The line through the
ascending node represents the reference line in orbit for measure-
ment of the true anomaly h . The coordinate frame x0, y0, z0, passing
through the system center of mass S with y0 pointing along the local
vertical and x0 along the normal to the orbital plane, represents the
local orbital referenceframe. Three successive rotations of this local
frame, a (pitch), c (yaw), and u (roll), lead to the general satellite
orientation represented by its body frame S ¡ xyz.

The proposed satellite controller model is composed of an aux-
iliary mass deployed using four identical tethers attached to four
distinct points on satellite surface (Fig. 1). The attachment points
lie in a plane parallel to the satellite-yawplane in a symmetricpattern
with the xyz coordinates given as A ´ (0, ¡ b, a), B ´ (0, ¡ b, ¡ a),
C ´ ( ¡ a, ¡ b, 0), and D ´ (a, ¡ b, 0). Here a and b denote yaw
plane and vertical offsets for satellite-tether attachment points.

The pendulumlike auxiliary mass m, being much smaller than
the satellite mass M , is treated as a particle. Transverse vibrations
of thin tethers, made of a light but rigid material like Kevlar and
assumed to have negligible mass, are ignored. Similarly, for the
variable vector length L joining the auxiliary mass to satellite mass
center S, two successive rotations, b about the x0 axis referred to as

Fig. 1 Geometry of motion of TSS in inclined, 24-h circular orbits
relative to an equatorial ground station.
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the in-plane mass swing or pitch angle and g representing its out-
of-plane swing or roll angle, lead to the associated tether coordinate
frame S ¡ xt yt zt with its yt axis aligned along the L itself.

The governing Lagrangian equations of motion obtained after
carrying out considerable algebraic manipulation and nondimen-
sionalization may be written as7
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subject to the following constraints:
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Synthesis of Open-Loop Tether Length Control Laws
Here an attempt is made to compensate for the effect of longitu-

dinal as well as lateral satellite drifts with respect to an equatorial
ground station by ensuring line-of-sight-pointing stability for drift-
ing satellites in nonequatorial, 24-h circular orbits through suitably
controlled tether length variations. A simple geometric analysis is
� rst carriedout to obtain the effectivesatelliteangular misalignment
n with respect to the line of sight in terms of pitch, roll, and system
parameters11:
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n
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where Rn = R / Rea , R =orbital radius, and Rea = Earth radius. Next
we show that for achieving n = 0 the desired satellite pitch and roll
variations are given by
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¤
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For the satellites positioned in an arbitrary equilibrium con� g-
uration, a substitution of the steady-state constant values for the
variables a , u , c , b , g , l and zero values for their derivatives into
Eqs. (1–7) and considerable simplifying approximations and alge-
braic manipulations leads to the following relations:

b = 1
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£
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¤

g = 1
2

sin ¡ 1
£
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¤
(12)

Strictly speaking, these relations apply to the � xed satellite equilib-
rium con� guration. However, in view of rather slow rates of pitch
and roll variations desired for the proposed satellite line-of-sight
pointing stability, it may be justi� ed to use these relations to at
least � rst order of accuracy. On substitution of these expressions for
a , u , b , and g into Eqs. (8), we canshow that the desired equilibrium
satellite orientation can be achieved provided the tether lengths are
regulated according to the following control laws:
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Table 1 Typical minimum tether length requirements for various satellite systems
(C = 107 , Ãa = 0.1, Ãb = 0.2)

System data Small satellites Medium satellites Large satellites

(Satellite-auxiliary mass), kg (500–25) (1000–50) (105–800)
( Ix – Iy – Iz ), kg-m2 (100–150–75) (500–1000–500) (107–107–8 £ 106)
L ref , m 4.5 4.5 115
(L t0)min , m

ib = 5 deg 9 9 230
ib = 20 deg 14 14 345
ib = 45 deg 17 17 460

Fig. 2 Typical response plots showing maximum relative satellite atti-
tude misalignments as affected by inclination ib .

Results and Discussion
With a view to assess the effectiveness of the proposed attitude

control strategy, the detailed system attitude misalignment n re-
sponse is numerically simulated using the exact Eqs. (1–8). The
attitude response results presented here correspond to tether length
variations in accordance with the open-loop control policy as given
by Eqs. (13).

Figure 2 shows the line-of-sight misalignment errors n for orbital
inclinations of 5, 15, and 40 deg. The resultingattitudemisalignment
errorsare found tohave rather low amplitudes of oscillations,which,
in general, increase with inclination. The overall trends remain vir-
tually unchanged regardless of the satellite mass distribution. Sim-
ulation of system attitude response for varying tether offsets in their
feasiblerange showed that, in general, an increase in the value of off-
set â leads to improvement in satellite attitude behavior. In contrast,
lower b̂ values resulted in greater precision in n response.

An important adverse effect of environmental perturbations on
the geosynchronous satellites is one of secular drift in their orbital
inclination, which increases almost uniformly with time. Figure 3
presents the effect of rate of change of inclination for the drifting
satellites on n response. As expected, the satellite misalignment
continually grows with increasing inclination. The larger the drift
rate of orbital inclination is, the larger the corresponding maximum
satelliteattitudemisalignmentswould be. Even for the large changes
in inclination of, e.g., 15 deg in 50 orbits at unrealisticallyhigh rates
assumed, the maximum misalignments remain well within a small
fraction of a degree.

Fig. 3 Typical satellite response demonstrating the effectiveness of the
controller for uniformly growing ib .

The prior knowledge of minimum tether length requirement for
the proposed control strategy is of considerable importance. This
information, based on extensive numerical simulations over a range
of tether lengths for some typical situations, is presented in tabular
form (Table 1). The table covers practically all types of tethered
satellite-auxiliarymass con� gurations.

Conclusion
In general, tether lengths needed to increase with an increase in

the size of the satellite as well as a decrease in the auxiliary mass
attached. The tether lengths on the order of a few meters may suf� ce
to provide the desired attitude compensation to ensure the satellite
line-of-sight-pointing for even relatively large north-south satellite
drifts. The proposed variable attitude control approach may also be
useful as an alternative to the conventional and perhaps more expen-
sive station-keeping maneuvers required for geostationary satellites
in contingencies and/or during last leg of the satellite missions with
onboard fuel nearing depletion. The nearly passive nature of the
proposed mechanism using short tethers along with small auxiliary
mass needed makes the concept particularly attractive for future
space missions.
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Nomenclature
a = equatorial radius of the planet, m
b = polar radius of the planet, m

= section of the planet’s surface by a plane
containing the polar axis and X

C( a ) = point on with geodetic latitude a
e = eccentricity of the planet, e =

p
(1 ¡ r 2)

(dimensionless)
H ( a ) = distance from X to C( a ), m
h = geodetic altitude of X, m
N = outward unit normal vector at P
O = center of the oblate spheroidal planet
P = intersection of the planet’s surface and the line

through O and X
Q = intersection of the planet’s equator and the line

through P and X
X = point in space whose geodetic coordinates

are to be computed
(x , y, z) = Cartesian (geocentric) coordinates of X, m
b e( a ) = auxiliary function,

p
{1 ¡ e2[sin( a )]2}

(dimensionless)
h ( a ) = angle between C 0 ( a ) and C( a ) ¡ X, deg
j = contraction constant (dimensionless)

Received 4 March 1999; revision received 10 September 1999; accepted
for publication 9 November 1999. Copyright c° 1999 by the American In-
stitute of Aeronautics and Astronautics, Inc. All rights reserved.

¤ Professor, Department of Mathematics, MS-32.
†Manager, Geometry and Optimization Group, P.O. Box 3707, Mail Stop

7L-21.

k = geodetic latitude of X, deg
l = geocentric latitude of X, that is, polar angle

of the Cartesian point ( q , z), deg
q = polar radius of the Cartesian point (x , y),p

(x2 + y2), m
r = ratio of the polar and equatorial radii, r =b/ a

(dimensionless)
u = geodetic latitude of P, deg
} = longitude of X, that is, polar angle of the

Cartesian point (x, y), deg

Subscripts

d = negative altitudes (deep), h < 0
h = high altitudes (high), a r 2 / b e( k ) < h
` = low altitudes (low), 0 ·h ·a r 2 / b e( k )
0, 1, n, n + 1 = number of iterations

Introduction

T HIS Note presents a provably accurate algorithm to compute
the geodetic latitude and geodetic altitude of a point in space

relative to an oblate spheroid (a planet), given the geocentric posi-
tion of the point relative to the spheroid. This computation is often
necessary for navigation and tracking of aircraft, space vehicles,
or other objects. The measurements yield the geocentric Cartesian
coordinates (x , y, z) of the target X:

X =

³
q

z

´
=

(
[a / b e( k ) + h] cos( k )£
a r 2 ê b e( k ) + h

¤
sin( k )

)
(1)

Equation (1) relates the cylindrical coordinates ( q , z) to the geode-
tic coordinates ( k , h) (Ref. 1) (Fig. 1). The problem consists of
computing the target’s geodetic altitute h and geodetic latitude k
given x , y, z. This problem can be solved in closed form (contrary
to Deprit and Deprit-Bartholome2) because it reduces to solving a
quartic equation. However, a closed-form algebraic solution of the
quartic equation is impractical for numerical computations for three
reasons. First, it requires the computation of a complex cube root,
which itself involves a numerical approximation. Second, algebraic
solutions contain subtractions that can result in catastrophic cancel-
lations of signi� cant digits. Finally, because of the complexity of
the algebraic solutions, no practical upper bounds on the effects of
rounding errors, over� ow, and under� ow appear to exist. The lit-
erature contains various numerical approximations for the geodetic
coordinates,3 but apparently does not provide bounds on the errors in
the presence of � oating-point arithmetic or other perturbations, nor
bounds on the number of iterations necessary to achieve a speci� ed
accuracy. In one instance, an algorithm4 published in this journal at-
tempts a division by zero above the poles and near the poles calls for
divisions by small numbers that would amplify previous rounding
or measurement errors.

In contrast, the algorithm presented here begins with a geocentric
approximation and re� nes it through one iteration of a contract-
ing map. The method is accurate to two-millionths of a degree for

Fig. 1 Problem: given ½ and z for X, compute h and ¸.
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