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ABSTRACT

The analysis of opportunities of use of rotat-
ing space tethered systems (STS) is carried out
and it is shown that their realization allows one
to receive additional profits practically in all ar-
eas of possible application of STS. Peculiarities
of dynamics of STS rotational motion are con-
sidered and basic problems of researches in their
connection with problems of nonlinear dynamics
are determined. A model of STS perturbed mo-
tion, suitable for researches of the dynamics by
asimptotical methods of nonlinear mechanics is
offered. The basic regularities of an evolution of
STS rotational motion under influence of inter-
nal and external perturbations are considered:
influence of essentially nonlinear internal oscilla-
tions on dynamics of the systems is determined;
regularities of influence of the dissipative forces
of aerodynamic resistance and the internal fric-
tion in a material of the tether are determined.
Interconnection of orbital and relative motions
is analysed and their control laws with the use
of internal forces by periodic change of distance
between bodies are offered.
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Federation or the International Academy of As-
tronautics. All right reserved.

1. OPPORTUNITIES OF APPLICATION
OF ROTATING STS

The Canadian project BICEPS – BIstatic
Canadian Experiment on Plasmas in Space 1 and
its support by NASA 2 are represented as a sig-
nificant step in development of a direction of use
of rotating STS. An opportunity of rather sim-
ple changes of the tether length, the force of its
tension and angular velocities of rotation of the
system have made possible to offer the use rotat-
ing STS for space plasma research.

Rotation of STS in the project of an aerody-
namic probe would make possible somewhat to
dicrease velocity of motion of a probe in an atmo-
sphere by means of inverse with respect to STS
orbital rotation. Thus it is possible to provide
that after immersing in a low atmosphere the
tethered satellite making a rotary motion around
the STS centre of mass will leave dense layers of
an atmosphere and the rather long time will be
in conditions favourable for cooling. These con-
ditions can be essential for the equipment, for
example carrying out supervision (a photograph-
ing) surfaces of the Earth. Rotating STS, pass-
ing in the rotation different layers of an atmo-
sphere as though scans it. Such research of an
atmosphere can be alternative to research by
means of a radial STS of a kind of ”beads” of
sensors 3,4.

Use of STS rotating in an orbit significantly
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expands opportunity of their use for transport
operations because significantly increases an ac-
cumulation by STS both kinetic energies and an-
gular momentum.

The STS rotating around centre of mass can
serve also as integrated sensor for research of in-
fluences of the Earth fields. When STS is ac-
cumulating on a half-revolution of the rotation
around the centre of mass results of influence as
change of the angular velocity of the rotation it
allows one to receive an integrated, average esti-
mation of a difference of influences on tethered
bodies. So the project of the small STS consist-
ing in rotation of small STS with two trial end
bodies with different ballistic factors is interest
for research of latitudinal changes of density of
an atmosphere.

Small rotating STS can serve as the standard
of length for calibration and measurements of the
characteristics onboard and ground optical and
radar-tracking systems.

The question of use the rotating electrody-
namic STS is outside of attention of the re-
searchers for today also. And though this ques-
tion concerns more to physicists it seems that
use of rotating STS in a magnetic field as Hertz’s
doublet will allow one to generate in a separate
conductor an alternating current. The positive
decision of this question would open a perspec-
tive opportunity for realization of the project of
electrodynamic STS in vacuum i.e. without cre-
ation of a closed contour of a current in an iono-
sphere and appropriate equipment and on higher
orbits.

The stabilization of motion of small STS by
creating of its rather fast rotation around the
centre of mass is simple and reliable and in many
cases only possible passive way. Therefore ro-
tating STS represent the special interest for the
projects of creation of small cable systems which
can find wide application for the experimental
and scientific purposes and for creation of teth-
ered microsatellite systems.

It is obviously that even brief consideration of
opportunities of rotating STS shows that their
use allows one to receive new effects practically
in all areas of STS use.

2. RESEARCH PROBLEMS OF DYNAMICS
OF ROTATING CABLE SYSTEMS

Dynamics of rotary motion of STS has a num-
ber of essential differences from dynamics of a
radial STS the problems of which were widely in-
vestigated within the framework of preparation
of the projects TSS-1 and TSS-2. Here a qualita-
tively different regime of motion – the regime of
stabilization by rotation takes place. Basic ques-
tions of dynamics of a STS rotational motion are
distinct also: how orientation of the plane of STS
rotation will vary?; how its velocity of rotation
will vary? Areas of resonance regimes of motion
and their properties are distinct.

Low rigidity of bodies connection is one of the
basic peculiarities of STS. By virtue of it and
also by virtue of a unilateralness of action of ca-
bles the regimes of STS motion with large ampli-
tude of oscillations on internal degrees of freedom
are possible, the character of which is essentially
nonlinear. And these oscillations despite of their
dissipation by internal friction can constantly be
excited in motion of STS with respect to, for
example, thermal impact at an input-output of
STS in a shadow of the Earth. Thus the re-
search of dynamics of rotational motion is con-
nected with the decision of the nonlinear me-
chanics problem of influence of essentially non-
linear oscillations of bodies on internal degrees
of freedom on dynamics of systems in a central
field of forces.

The analysis of works on this problem shows
that to the present time the significant quantity
of works on dynamics of systems of connected
bodies with oscillatory parts exists. However the
majority of researches is carried out in the as-
sumption of a smallness of amplitudes and qua-
sistaticness of system oscillations caused by fi-
nal rigidity of connections. These assumptions
correspond either linear oscillations of a system
on internal degrees of freedom or in general ex-
clude from consideration influence of own elastic
oscillations of the system. For problems in such
statement to the present time the well developed
techniques of researches exist. The works on dy-
namics of systems at oscillations of bodies on
internal degrees of freedom with large amplitude
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and at a getting off bodies from connection to
the present time are practically away. Developed
techniques of dynamics research of such systems
are away also.

The large extent of STS causes essential in-
crease of forces and moments influencing to its
motion. A correctness of a consideration of STS
motion about an orbit of the centre of mass
within the framework of limited statement of a
problem should each time prove to be true. At
the same time, the research problem of long-
duration STS rotation in an orbit requires the
careful analysis of influence both external envi-
ronment and properties of connection as long in-
fluence even of small forces can result in signifi-
cant deviations of motion from programm. Thus
research of dynamics of STS rotational motion
is connected with the solution of the problem of
evolution of motion of extended systems in earth
orbits.

Because this problem had not direct practi-
cal importance earlier, many its aspects have re-
mained not investigated. For example, the anal-
ysis of interrelation of orbital and relative mo-
tions in a Newtonian field of forces is not com-
pleted. There are not enough works on research
of possibilities of control of motion of connected
bodies systems in a Newtonian field of forces by
way of redistribution with the help of internal
forces of an angular momentum between orbital
and relative motion.

Named problems of nonlinear dynamics of
space systems include:

- the problem of redistribution of energy in
resonance regimes;

- the problem of synchronization and stochas-
tization of motions.

The analysis of a state of named problems for
today shows that their research first of all re-
quires the construction of a qualitative picture
of nonlinear dynamics, i.e. definition of the ba-
sic regularities and possible effects of nonlinear
interactions. With this purpose use of model
problems is expedient, i.e. use of such simplified
models of dynamics in which essential interac-
tions of researched process are kept only.

3. MODEL OF STS PERTURBED MOTION

We shall consider motion of system of two dot
masses connected by an elastic weightless flexible
tether in a central Newtonian field of forces. The
equations of motion of considered system are

m1
~̈R1 = −µm1

~R1

R1
3 + T1 ~er + ~F1,

(1)

m2
~̈R2 = −µm2

~R2

R2
3 − T1 ~er + ~F2,

where mi are the masses of material points, ~Ri
are their radiuses-vectors from the Newtonian at-
tracting centre, T1 ~er is the force, acting along the
connection line (the elastic force of the tether),
~er is a unit vector directed along the connection
line, ~Fi is the total vector of other forces, acting
on i-th body (i = 1, 2), µ is the gravitational
constant.

From (1) we obtain the equation of relative
motion and the equation of centre of mass mo-
tion of the system

~̈r = ~̈R2− ~̈R1 = −T ~er+ ~F , ~̈R = −µ
~R

R3
+ ~F ∗, (2)

where ~R =
~R1m1 + ~R2m2

M is the radius-vector of
the center of mass of the system from the attrac-
tive center , M = m1 +m2,

T = T1
M

m1m2
, ~F =

~F2

m2
−

~F1

m2
+ ~Fgr,

~F ∗ = (~F1 + ~F2)/M + ~F ∗
gr,

~Fgr = µ(~R1/R
3
1 − ~R2/R

3
2),

~F ∗
gr = µ~R/R3 − 1

M

2∑
i=1

µmi
~Ri/R

3
i .

It is supposed that the ratio of the system
length r = |~r| to distance from the centre of mass
up to the attracting centre R is a small value
r/R� ε1, and also a smallness of the disturbing
accelerations ~Fi in the sense that kinetic ener-
gies of motion of the system around the centre
of mass and motion of its centre of mass essen-
tially surpass work of the appropriate disturbing
forces on a considered interval of time.
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We shall introduse the right coordinate sys-
tems. Cξηζ is an absolute coordinate system
with the origin in the attracting centre C. CXY Z
is a ”perigee” coordinate system connected with
an instant orbit of the centre of mass motion.
The axis CX is directed from C to the pericen-
ter of an orbit, the axis CZ is derected on the
vector of an angular momentum of the centre of
mass motion (binormal). Oxyz is a moving co-
ordinate system with the origin in the centre of
mass of the system. The axis Oz is directed on
the vector of an angular momentum of relative
motion, axis Ox is derected on ~r. Mutual ori-
entation Cξηζ and CXY Z, CXY Z and Oxyz
is defined by Eulerian angles Ω, i, ωπ and ψ, θ, φ
accordingly.

On the basis of the theorem of change of an an-
gular momentum and using known relations be-
tween derivatives of the angles and components
of angular velocity we obtain 5

ψ̇ =
rF3 sinϕ
L sin θ

− ωψ, θ̇ =
rF3 cosϕ

L
+ ωθ,

(3)
L̇ = rFϕ, ϕ̇ =

L

r2
− γ̇ cos θ + ωϕ,

ωψ = cot θ
(
di

dt
sin γ − Ω̇ sin i cos γ

)
− Ω̇ cos i−

−ω̇π, ωθ = Ω̇ sin i sin γ +
di

dt
cos γ,

ωϕ = Ω̇ (sin θ sin i cos γ − cos θ cos i)−

−di
dt

sin θ sin γ.

where L =
(
~r × ~̇r, ~e3

)
is the magnitude of a spe-

cific angular momentum of the system relative
motion, ~e3 is a unit vector of the axis Oz, F2, F3

are the projections ~F on the axes Oy,Oz accord-
ingly, γ = ωπ + ψ.

The equation of change r we obtain by way of
projecting the first of the equations (2) on the
axis Ox

r̈ − L2

r3
= −T + F1, (4)

where F1 is the projection ~F on the axis Ox.
The equations (3), (4) and the equations of

perturbed Kepplerian motion

di

dt
=
R

p
cosuF̃03, Ω̇ =

R

p

sinu
sin i

F̃03, ṗ = 2RF̃02

ė = F̃01 sin ν +
[
cos ν + (e+ cos ν)

R

p

]
F̃02, (5)

ω̇π = − F̃01 cos ν
e

+ F̃02

(
1 +

R

p

)
sin ν
e
−

−R
p

sinu cot iF̃03, u̇ =
√
µp

R2
− R

p
sinu cot iF̃03.

where ν = u− ωπ, R = p/ (1 + e cos ν) , F̃0i =
= F ∗

oi

√
p/µ(i = 1, 2, 3), F ∗

oi are the projection
F ∗ on the axes CX,CY,CZ accordingly, e is the
eccentricity, p is the focal parameter, ν is the true
anomaly make complete system of the equations
of motion.

The basic peculiarity of these equations is the
presence of the nonlinear oscillatory link (4), de-
scribing longitudinal oscillations of the system on
an internal degree of freedom (the oscillations of
distance between bodies). The technique of re-
search of such systems is given in 6. Idea of a
deriving of the equations of perturbed motion of
the oscillatory link is following. We shall assume
that the elastic force of the tether is those that
in unperturbed motion that is at F1 = 0 and
L = const, r periodically changes between ex-
treme meanings r1 and r2, r1 < r2. Then in the
unperturbed motion r can be presented in form

r = a− bΦ (w(t)) , (6)

a =
r1 + r2

2
, b =

r2 − r1
2

.

If to accept that ẇ = k = const then the form
of the oscillations will be described by the func-
tion Φ(·). If to fix the form of the oscillations in
the unperturbed motion, i.e. assuming that Φ(·)
is an invariable function and considering b and w
as new variable, we obtain the equations of the
perturbed motion of the longitudinal oscillations

ḃ =
{
−kbF1

dΦ
dw

− L̇
[
L

(
1

(a+ b)2
− 1
r2

)
+

+
∂a

∂L

∂V (a+ b)
∂a

]} [
∂V (a+ b)

∂a

(
1 +

∂a

∂b

)]−1

,

(7)

ẇ = k −
(
ḃΦ(w)− ḃ∂a

∂b
− ∂a

∂L
L̇

)
/

(
b
dΦ
dw

)
,

where
V (r) =

∫
Tdr + 0.5L2/r2,
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a, b and L are connected by a rilation V (a+b) =
V (a− b).

The equations system (3), (5), (7) is suitable
for its research by asimptotical methods of me-
chanics. In a general case of rather fast rotation
of the system about the centre of mass the sys-
tem equations has two fast variables ϕ and w and
two small parameters r/R = ε1 and (u̇/ϕ̇)2 = ε2.
We note that for a regime of motion with large
amplitude of the longitudinal oscillations when
b/a is not small the dependence ϕ̇ from w compli-
cates direct application of the averaging method.
In this case expediently to use angular value
ϕ1, ϕ̇1 = L/r2 as a new independent variable.
The scheme of a deriving of the equations of the
perturbed motion in this case does not change6.

4. BASIC RESULTS OF RESEARCHES OF
NONRESONANCE REGIMES OF MOTION

The research of system dynamics was carried
out by the averaging method. The equations of
the first approximation on small parameters ε1
and ε2 are constructed and on their basis the fol-
lowing conclusions are made.

4.1 Influence of longitudinal oscillations

The longitudinal oscillations do not qualita-
tively change the nature of the evolution of the
parameters of system motion and the evolution
of its motion in the first approximation coincides
with the evolution of motion of a dumb-bell with
the certain length of a bar. In a case of essen-
tially nonlinear longitudinal oscillations and in
particular in a regime of motion with a getting
off from the connection the length of this bar is

equal
(
r∗

4/r∗2
)1/2

r∗
4 =

1
2π

2π∫
0

dw1

(a1 − b1Φ1(w1))
4 ,

(8)

r∗2 =
1
2π

2π∫
0

dw1

(a1 − b1Φ1(w1))
2 ,

where a1, b1,Φ1, w1 are defined similarly a, b,Φ, w
in (6) 6:

1
r

= a1 − b1Φ1(w1),
dw1

dϕ1
= const.

In case of oscillations with small amplitude
b/a � 1 the evolution of the system rotational
motion coincides with evolution of motion of a
dumb-bell with the length of a bar r0 where r0
is defined by equality of elastic and centrifugal
forces.

4.2 Effect of aerodynamic forces

The aerodynamic influences on the system are
described by forces acted on each body of the
system

~Fai = − ~̇Ri| ~̇Ri|kimi, (9)

where ki = ρicxiSi/2mi, ρi is the density of an
atmosphere, Si is the area of midship, cxi is the
aerodynamic factor of resistance (i = 1, 2). Then
the influence on relative motion of the system
with accuracy to the members about ki|~̇r| looks
like

~Fa = (k1 − k2)| ~̇R| ~̇R− I
[
| ~̇R|~̇r + ( ~̇R, ~̇r) ~̇R/| ~̇R|

]
,

I = (k2m1 + k1m2)/M (10)

The second member of the formula (10) gives the
dissipative component of aerodynamic accelera-
tions.

Only dissipative component of aerodynamic
forces influences on the evolution of the system
motion 7. Their conservative component results
only to small almost periodic oscillations of the
system.

At influence only of aerodynamic forces the
angular momentum of the system relative mo-
tion aspires to be situated in the orbit plane (the
plane of the system rotation aspires to lie perpen-
dicularly the plane of the orbit). This effect takes
place for any orbit of the centre of mass. And in
each moment of time the system aspires to ro-
tate perpendicularly to the vector of velocity of
the centre of mass that corresponds to tendency
to a state giving a minimum velocity of a energy
dissipation in the relative motion.

This tendency of the system to avoid friction
results in that the angular momentum of the rel-
ative motion of the system, making precession
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about the normal to the orbit plane under in-
fluence of the Newtonian field of forces aspires
to lie in the orbit plane under influence of re-
sistance of environment. For elliptic orbits the
system aspires to a unique state corresponding
to integrated minimum of the energy dissipation
(more often this state corresponds to rotation of
the system perpendicularly to the tangent to the
orbit in its perigee). Thus under action of aero-
dynamic forces the system aspires to the state
of the least aerodynamic dissipation the relative
motion energy .

4.3 Influence of energy dissipation
in material of the tether

In the first approximation on small parame-
ters an internal dissipation of energy results only
in monotonous damping of the own elastic os-
cillations and does not change qualitatively the
motion evolution of the system. Therefore the
influence of the energy dissipation on the evolu-
tion of motion (the stage of slow evolution) for
the majority of real space systems is neglectly
small. Nevertheless, the question of evolution of
extended visco-elastic systems in the Newtonian
field of forces is interest for celestial mechanics
and for definition of general regularities of mo-
tion and is a constant subject of researches and
discussions (see for example 10). The used the
elementary visco-elastic system of two material
points has allowed us to carry out the deep analy-
sis of the relative motion and to consider general
regularities of the translational-rotary motion.

The motion of the system of two material
points connected by a weightless visco-elastic
tether in the Newtonian field of forces was con-
sidered. The elastic properties of tether are de-
scribed by the Hook’s law and dissipative proper-
ties described by introduction of equivalent ”vis-
cous friction” :

~̈r = −(cm(r − d) + ςṙ)
~r

r
+ ~Fgr,

cm = c

(
1
m1

+
1
m2

)
,

where c is the coefficient of rigidity of the tether,
d is its nominal length, ς is the factor describing

viscous friction in the tether. Research of the
influence of the energy dissipation in a material
of the tether is carried out with accuracy to the
second order of the smallness inclusive.

In a case when (r/R)2 neglectly small (ε21 �
ε22) the trajectory of the system centre of mass
can be considered as an unperturbed Kepplerian
orbit, i.e. the problem can be considered in lim-
ited statement. In this case under influence of
the energy dissipation in the tether the system
in each moment of time aspires to the location
giving the minimum of the dissipation of energy
of the relative motion that corresponds to aspi-
ration of the system to rotate perpendicularly ~R.
For any orbit of the centre of mass the angular
momentum of the relative motion aspires to lie
in the orbit plane (θ → π/2). And for θ close to
π/2 the action of the dissipative forces traces an
elliptic shape of the orbit and aspires to arrange
the plane of the system rotation perpendicularly
to the radius-vector of the orbit pericenter.

Comparison of received results with conclu-
sions about influence dissipative component of
aerodynamic forces allows us to assume that in-
fluence of dissipative forces of a various physi-
cal nature on the relative motion of the system
in the Newtonian field of forces results in aspi-
ration of the system to a location appropriate
to the least loss of energy of the relative mo-
tion. This assumption corresponds to known hy-
pothesis 9 about aspiration of material systems
to avoid friction. However in 9 this hypothesis
is considered as the resulting tendency of sys-
tems motion : in result of influence of dissipative
forces the motion velocities causing of energy dis-
sipation become equal zero. In considered cases
the system in each moment of time aspires to
the location appropriate to the minimum of en-
ergy dissipation and action of dissipative forces
is directed on change of all parameters of system
motion according to this principle. Thus it is
possible to put forward the assumption that as-
piration of systems to avoid friction is tendency
acting in each moment of time, and also that
the influence of dissipative forces is directed on
change of motion parameters according to this
tendency.

In the translational-rotary motion of the sys-
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tem the action of dissipative forces is directed on
the following changes in the system motion: the
absolute value of the angular momentum of the
system relative motion decreases, being redis-
tributed in the angular momentum of the orbital
motion, the eccentricity of the orbit (e0 6= 0)
grows, the angle of a nutation θ aspires to some
value π/2−αc, 0 < αc < π/2 and only in the end
aspires to π/2, i.e. the influence of dissipative
forces aspires to transfer the backward rotation
θ > π/2 systems in direct θ < π/2. The interpre-
tation of obtained results from the point of view
of the formulated above assumption has brought
interesting results. The fact is that increase of
the eccentricity of the orbit and the system as-
piration to direct rotation, generally speaking,
are directed on increase of capacity of dissipa-
tive forces, i.e. the change of these parameters
cannot be explained within the framework of the
introduced assumption. The analysis of change
of the system evolution in comparison with the
motion of the system about of a unperturbed or-
bit has allowed us to make a conclusion that the
character of these changes corresponds to aspi-
ration of the orbital motion to reduce a loss of
energy (to increase its reception for) its motion.

The general picture of the evolution of the sys-
tem motion under action of the dissipative forces
combines of aspiration of each of motions – the
orbital and the relative – to reduce a loss of en-
ergy (to increase its reception for) its motion.

Certainly, it is only a special case. But the
contradiction between the different forms of mo-
tions in their aspiration to keep or to get energy
is represented rather interesting, as such contra-
dictions leave a chance for development of mo-
tion, and not just for its trivial forms.

4.4 Interrelation of translational and rotary
motions

We consider motion of the system in the New-
tonian field of forces at absence of other external
forces ~Fi ≡ 0. The constant angular momentum
of the system ~C is equal to the sum of angular

momentums of orbital and relative motions

M
√
pµ~e∗3 +

m1m2

M
L~e3 = ~C, (11)

where ~e∗3 is a unit vector of the axis CZ.
Projections of the equation (11) on the axes of

the coordinate system Cξηζ, where the axis Cζ
is directed on the vector ~C give three integrals
of the areas:

ωπ = π − ψ,
√
pµ cos i+

m1m2

M2
L cos(θ − i) = C

′
, (12)

m1m2

M2

L

sin i
=

√
pµ

sin(θ − i)
=

C
′

sin θ)
, C

′
=
|~C|
M

.

The second and third equality (12) are the rela-
tions of a triangle, formed by the vectors of an-
gular momentums of motions. The first equality
(12) follows from the costruction of the coordi-
nate systems and means that the axis of the sys-
tem rotation about the centre of mass lays in a
plane normal to a line of nodes of the orbit that
coincides with the third generalized Cassini law
10.

From (12) it is follows that correctness of lim-
ited statement of the problem , i.e. the assump-
tion of independence of the orbital motion from
relative one requires not only fulfilment of the
condition r/R � 1 but also smallness of the ra-
tio of the module of the angular momentum of
the relative motion to the module of the angu-
lar momentum of the orbital motion: this ratio
should be value of the higher order of a smallness
than taken into account perturbing influences.
In the considered case of gravitational influences
a condition

m1m2

M2

L
√
pµ

/
r

R
∼ m1m2

M2

r

R

ω

ω0
� 1

must be carried out where ω0 and ω are the mag-
nitudes of the angular velocities of orbital and
relative motions.

The basic evolutionary effect of the motion of
the system quickly rotating around the centre
of mass consists in rotation of the plane formed
by the vectors of angular momentums, around of
the total angular momentum 11. In this case one
of component angular velocity of this rotation
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does not depend on both masses of bodies and
linear sizes of the system, and it is proportional
to the relation of angular velocities of orbital and
relative motions.

5. USE OF RESONANCE REGIMES FOR
CONTROL OF MOTION

We consider motion of the system in the New-
tonian field of forces at absence of other exter-
nal forces ~Fi ≡ 0. Distance between bodies we
shall consider as some known function from an-
gles of the system orientation, and r periodically
changes near some value a with amplitude b and
can be submitted as r = a−b cosw where a phase
of oscillations w is a function from angles of the
system orientation. The equation (4) allows one
to determine value of necessary control along a
line of the tether for fulfilment of this functional
dependence.

5.1 Control of the relative motion

Possibilities of control for the relative motion
we consider in limited statement of the problem.
For an estimation of change of angular velocity of
the relative rotation we shall consider a motion
in the plane of a circular orbit. The equations
(3) will accept a form

L̇ = −3
2
µ

R3
sin 2α, α̇ =

L

r2
− ν̇, ν̇ =

√
µ

R3
, (13)

where α = ϕ+ψ− ν is the angle between ~R and
~r. The largest increase L at a rotational motion
will give the law of regulation of the tether length
in a form r = a − bsign(sin 2α). The transition
from an initial librational motion to rotary is re-
alized by a swinging of the system (the swings),
for example by the law r = a − bsign(α′ sin 2α)
where the stroke designates derivative on ν. Be-
low for a circular orbit of radiusR = 6671km and
for the initial conditions α′0 = 10−5, α0 = π/2
for the law of control r = a (1− 0.1sign(sin 2α))
estimations of achievement by one of bodies of
system (m1 = m2) of velocity sufficient for tran-
sition to a hyperbolic trajectory at break of the
tether are resulted 11.

a, km α′ Time, day T,m/s2

1 5526 173,3 41015
50 110 3,4 827,1
200 27 0,8 210,5
500 10,1 0,3 82,7

In the last column values of centrifugal ac-
celeration appropriate to angular velocity are
brought. The parameters of transition can be
improved for system of bodies of different mass
and at motion on an elliptic orbit 12. The motion
of the second body after break of the tether will
depend on distance up to the centre of mass. In
particular, it is possible to select such parame-
ters of the system that the second body remained
practically on the same orbit but rotated in the
opposite direction.

For control of value of an angle of a nutation
θ two simple laws of control of the tether length
based on the tuning of the system oscillations in
an internal resonance r = a − b/sin2ϕ and ex-
ternal resonance r = a− b sin 2(ν −ψ) of system
were considered. It was shown that both laws
allow one to operate value of the angle θ. The
change of the angle of a precession does not re-
quire a control.

5.2 Control of the orbital motion

The possibility of control of parameters of the
orbital motion of the system follows from fact
that at orientation of the system different from
equilibrum the attraction force have transversal
and normal components. On the basis of this
fact the various schemes of control for elements
of an orbit with the use of internal forces can be
constructed.

The possibility of change of orientation of the
orbit plane follows from an possibility of change
of value and orientation of the angular momen-
tum of yhe relative motion. As the ratio of veloc-
ity of change L to angular orbital velocity pro-
portionally

√
µ/p3r2/L, by virtue of (12) the es-

sential change of the inclination of the orbit i is
possible during (p/r)2 /2π of revolutions on the
orbit. Velocities of control for the value of the
angle Ω are similar as the angular momentum of
the centre of mass motion moves on a surface of
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a cone with an angle of a half-solution equal i:

sin i =
m1m2

M2

L sin θ
C ′ .

The change of the argument of the pericenter
and the eccentricity of the orbit is possible with-
out change of the module and orientation of the
angular momentum of the orbital motion 12,13.

We shall consider possibilities of change of the
focal parameter at a motion of the system in the
plane of the orbit. The equation (3), (5) in this
case can be written as

L̇ = −3
2
µ

R3
r2 sin 2α, α̇ =

L

r2
− u̇,

ṗ = 3
m1m2

M2

√
p

µ

µ

R3
sin 2α, u̇ =

√
µp

R2
,

ė =
3
2
m1m2

M2

√
pµ

R2

(
r

R

)2 [
sin ν(1− 3 cos2 α)+

(14)(
cos ν +

e+ cos ν
1 + cos ν

)
sin 2α

]
,

ω̇π =
3
2

1
e

m1m2

M2

√
pµ

R2

(
r

R

)2 [
cos ν(3 cos2 α−

−1) +
(

1 +
1

1 + cos ν

)
sin ν sin 2α

]
.

From the equations (14) it is obviously that the
greatest velocity of increase of parameter p is
reached at m1 = m2 and α = 45◦. Hence the
dumb-bell with equal masses supported in a state
α = 45◦ at the expense of control moment cre-
ated by internal forces (for example, fly-wheel
placed in centre of masses) is the most effective
model for increase of focal parameter. The so-
lution of the equations (14) averaged on u looks
like

p =
[
p2
0 +

3
2
r2(u− u0)

]1/2

,

ωπ = ωπ0 +
1
4

ln
(
p

p0

)
, e = e0

(
p

p0

)5/4

, (15)

L = L0 − 4(
√
µp−√µp0),

where the value L characterizes change of an an-
gular momentum of a fly-wheel. The estimations
of an possibility of the given model of change of
the orbit parameters for 100 revolutions around

of the attracting centre depending on the length
of a bar for p0 = 6671km are given below.

r, km p− p0, km e/e0
0,1 0,00 1,000
1 0,07 1,001
10 7,06 1,011
100 672,5 1,101
200 2395,5 1,359

It is obviously from the table that the essential
change of parameters of an orbit can be reached
at lengths of the bar beginning with tens kilome-
ters that essentially limits possibilities of prac-
tical realization of the given model of control.
Uses of cables allows one considerably increase
extent of the systems but complicates transfer
of control moment. The idea of control of the
orbit parameters of STS consists in fact that at
the expense of internal forces distance between
bodies changes and by that way angular veloc-
ity of rotation of system is adjusted so that in
the necessary orientation the system was longer,
than in a state giving an opposite effect of con-
trol . So for increase p the change of length of
the rotating system can be realised under the law
r = a+ b sin 2α.

The solution of the equations (14) averaged
on α and u differs from the solutions (15) in this
case by that in the formulas for L, p, e r2p will be
instead of r2 , and r2ω – for ωπ, where

r2p =
a3b+ 3/4ab3

a2 + b2/2
,

(16)
r2ω =

a4 + 3a2b2 + 3/8b4

a2 + b2/2
.

6. CONCLUSION

The considered opportunities of use of Space
cable systems stabilized by rotation show per-
spectiveness of this direction. The research of
dynamics of such systems is a complex problem
connected with the solution a number of funda-
mental problems of nonlinear mechanics and in
particular with the problem of influence of oscil-
lations of bodies on internal degrees of freedom
on dynamics of system.
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Use of model problems for research of complex
dynamic systems when in mathematical model
essential elements to the researched phenomenon
are allocated and kept only is convenient and in
many cases only possible way of development of
representations, definition and analysis of laws
in their causal-consecuensal interrelation. In the
considered model problem such important ele-
ments of dynamics of the real STS as an possi-
bility of essentially nonlinear oscillations on in-
ternal degrees of freedom and large extent of sys-
tem are kept. The considered model of rotational
motion of the STS given by the equations (3) -
(5) is close to a problem of three bodies in celes-
tial mechanics. The distinction is that the elas-
tic force of the tether is distinct from Newtonian
force of gravitation. This difference has required
development of new methods of researches.

Spent researches have allowed us to define the
basic regularities of evolution of parameters un-
der influence of external and internal perturba-
tions, interrelation of orbital and relative mo-
tions and to consider basic possibilities of con-
trol for motion by way of resonance change of the
tether length. The picture of possible regimes of
motion of the considered model problem should
be complemented by regimes of chaotic and syn-
chronous motions the research of which will be
carried out at the moment. Developed tech-
niques and received results (some of which are
unexpected), we hope, represent general interest
for nonlinear dynamics problems.
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